########################################################################
# File name: types.py
# This file is part of: aioxmpp
#
# LICENSE
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this program. If not, see
# <http://www.gnu.org/licenses/>.
#
########################################################################
"""
:mod:`aioxmpp.xso.types` --- Types specifications for use with :mod:`aioxmpp.xso.model`
#######################################################################################
See :mod:`aioxmpp.xso` for documentation.
"""
import abc
import array
import base64
import binascii
import decimal
import ipaddress
import numbers
import re
import unicodedata
import warnings
import pytz
from datetime import datetime, timedelta, date, time
from .. import structs, i18n
[docs]class Unknown:
"""
A wrapper for an unknown enumeration value.
:param value: The raw value of the "enumeration" "member".
:type value: arbitrary
Instances of this class may be emitted from and accepted by
:class:`EnumCDataType` and :class:`EnumElementType`, see the documentation
there for details.
:class:`Unknown` instances compare equal when they hold an equal value.
:class:`Unknown` objects are hashable if their values are hashable. The
value they refer to cannot be changed during the lifetime of an
:class:`Unknown` object.
"""
def __init__(self, value):
super().__init__()
self.__value = value
@property
def value(self):
return self.__value
def __hash__(self):
return hash(self.__value)
def __eq__(self, other):
try:
return self.__value == other.__value
except AttributeError:
return NotImplemented
def __repr__(self):
return "<Unknown: {!r}>".format(
self.__value
)
[docs]class AbstractCDataType(metaclass=abc.ABCMeta):
"""
Subclasses of this class describe character data types.
They are used to convert python values from (:meth:`parse`) and to
(:meth:`format`) XML character data as well as enforce basic type
restrictions (:meth:`coerce`) when values are assigned to descriptors
using this type.
This type can be used by the character data descriptors, like :class:`Attr`
and :class:`Text`.
.. automethod:: coerce
.. automethod:: parse
.. automethod:: format
"""
[docs] def coerce(self, v):
"""
Force the given value `v` to be of the type represented by this
:class:`AbstractCDataType`.
:meth:`coerce` is called when user code assigns values to descriptors
which use the type; it is notably not called when values are extracted
from SAX events, as these go through :meth:`parse` and that is expected
to return correctly typed values.
If `v` cannot be sensibly coerced, :class:`TypeError` is raised (in
some rare occasions, :class:`ValueError` may be ok too).
Return a coerced version of `v` or `v` itself if it matches the
required type.
.. note::
For the sake of usability, coercion should only take place rarely;
in most of the cases, throwing :class:`TypeError` is the preferred
method.
Otherwise, a user might be surprised why the :class:`int` they
assigned to an attribute suddenly became a :class:`str`.
"""
return v
[docs] @abc.abstractmethod
def parse(self, v):
"""
Convert the given string `v` into a value of the appropriate type this
class implements and return the result.
If conversion fails, :class:`ValueError` is raised.
The result of :meth:`parse` must pass through :meth:`coerce` unchanged.
"""
[docs]class AbstractElementType(metaclass=abc.ABCMeta):
"""
Subclasses of this class describe XML subtree types.
They are used to convert python values from (:meth:`unpack`) and to
(:meth:`pack`) XML subtrees represented as :class:`XSO` instances as well
as enforce basic type restrictions (:meth:`coerce`) when values are
assigned to descriptors using this type.
This type can be used by the element descriptors, like
:class:`ChildValueList` and :class:`ChildValueMap`.
.. automethod:: get_xso_types
.. automethod:: coerce
.. automethod:: unpack
.. automethod:: pack
"""
[docs] @abc.abstractmethod
def get_xso_types(self):
"""
Return the :class:`XSO` subclasses supported by this type.
:rtype: :class:`~collections.Iterable` of :class:`XMLStreamClass`
:return: The :class:`XSO` subclasses which can be passed to
:meth:`unpack`.
"""
[docs] @abc.abstractmethod
def unpack(self, obj):
"""
Convert a :class:`XSO` instance to another object, usually a scalar
value or a tuple.
:param obj: The object to unpack.
:type obj: One of the types returned by :meth:`get_xso_types`.
:raises ValueError: if the conversaion fails.
:return: The unpacked value.
Think of unpack like a high-level :func:`struct.unpack`: it converts
wire-format data (XML subtrees represented as :class:`XSO` instances)
to python values.
"""
[docs] @abc.abstractmethod
def pack(self, v):
"""
Convert the value `v` of the type this class implements to an
:class:`XSO` instance.
:param v: Value to pack
:type v: as returned by :meth:`unpack`
:rtype: One of the types returned by :meth:`get_xso_types`.
:return: The packed value.
The returned value can be passed through :meth:`unpack` to obtain a
value equal to `v`.
Think of pack like a high-level :func:`struct.pack`: it converts
python values to wire-format (XML subtrees represented as :class:`XSO`
instances).
"""
[docs] def coerce(self, v):
"""
Force the given value `v` to be compatible to :meth:`pack`.
:meth:`coerce` is called when user code assigns
values to descriptors which use the type; it is notably not called when
values are extracted from SAX events, as these go through
:meth:`unpack` and that is expected to return correctly typed values.
If `v` cannot be sensibly coerced, :class:`TypeError` is raised (in
some rare occasions, :class:`ValueError` may be ok too).
Return a coerced version of `v` or `v` itself if it matches the
required type.
.. note::
For the sake of usability, coercion should only take place rarely;
in most of the cases, throwing :class:`TypeError` is the preferred
method.
Otherwise, a user might be surprised why the :class:`int` they
assigned to an attribute suddenly became a :class:`str`.
"""
return v
[docs]class String(AbstractCDataType):
"""
Interpret the input value as string.
Optionally, a stringprep function `prepfunc` can be applied on the
string. A stringprep function must take the string and prepare it
accordingly; if it is invalid input, it must raise
:class:`ValueError`. Otherwise, it shall return the prepared string.
If no `prepfunc` is given, this type is the identity operation.
"""
def __init__(self, prepfunc=None):
super().__init__()
self.prepfunc = prepfunc
def coerce(self, v):
if not isinstance(v, str):
raise TypeError("must be a str object")
if self.prepfunc is not None:
return self.prepfunc(v)
return v
def parse(self, v):
if self.prepfunc is not None:
return self.prepfunc(v)
return v
[docs]class Integer(AbstractCDataType):
"""
Parse the value as base-10 integer and return the result as :class:`int`.
"""
def coerce(self, v):
if not isinstance(v, numbers.Integral):
raise TypeError("must be integral number")
return int(v)
def parse(self, v):
return int(v)
class Float(AbstractCDataType):
"""
Parse the value as decimal float and return the result as :class:`float`.
"""
def coerce(self, v):
if not isinstance(v, (numbers.Real, decimal.Decimal)):
raise TypeError("must be real number")
return float(v)
def parse(self, v):
return float(v)
[docs]class Bool(AbstractCDataType):
"""
Parse the value as boolean:
* ``"true"`` and ``"1"`` are taken as :data:`True`,
* ``"false"`` and ``"0"`` are taken as :data:`False`,
* everything else results in a :class:`ValueError` exception.
"""
def coerce(self, v):
return bool(v)
def parse(self, v):
v = v.strip()
if v in ["true", "1"]:
return True
elif v in ["false", "0"]:
return False
else:
raise ValueError("not a boolean value")
def format(self, v):
if v:
return "true"
else:
return "false"
[docs]class DateTime(AbstractCDataType):
"""
Parse the value as ISO datetime, possibly including microseconds and
timezone information.
Timezones are handled as constant offsets from UTC, and are converted to
UTC before the :class:`~datetime.datetime` object is returned (which is
correctly tagged with UTC tzinfo). Values without timezone specification
are not tagged.
If `legacy` is true, the formatted dates use the legacy date/time format
(``CCYYMMDDThh:mm:ss``), as used for example in :xep:`0082` or :xep:`0009`
(whereas in the latter it is not legacy, but defined by XML RPC). In any
case, parsing of the legacy format is transparently supported. Timestamps
in the legacy format are assumed to be in UTC, and datetime objects are
converted to UTC before emitting the legacy format. The timezone designator
is never emitted with the legacy format, and ignored if given.
This class makes use of :mod:`pytz`.
.. versionadded:: 0.5
The `legacy` argument was added.
"""
tzextract = re.compile("((Z)|([+-][0-9]{2}):([0-9]{2}))$")
def __init__(self, *, legacy=False):
super().__init__()
self.legacy = legacy
def coerce(self, v):
if not isinstance(v, datetime):
raise TypeError("must be a datetime object")
return v
def parse(self, v):
v = v.strip()
m = self.tzextract.search(v)
if m:
_, utc, hour_offset, minute_offset = m.groups()
if utc:
hour_offset = 0
minute_offset = 0
else:
hour_offset = int(hour_offset)
minute_offset = int(minute_offset)
tzinfo = pytz.utc
offset = timedelta(minutes=minute_offset + 60 * hour_offset)
v = v[:m.start()]
else:
tzinfo = None
offset = timedelta(0)
try:
dt = datetime.strptime(v, "%Y-%m-%dT%H:%M:%S.%f")
except ValueError:
try:
dt = datetime.strptime(v, "%Y-%m-%dT%H:%M:%S")
except ValueError:
dt = datetime.strptime(v, "%Y%m%dT%H:%M:%S")
tzinfo = pytz.utc
offset = timedelta(0)
return dt.replace(tzinfo=tzinfo) - offset
def format(self, v):
if v.tzinfo:
v = pytz.utc.normalize(v)
if self.legacy:
return v.strftime("%Y%m%dT%H:%M:%S")
result = v.strftime("%Y-%m-%dT%H:%M:%S")
if v.microsecond:
result += ".{:06d}".format(v.microsecond).rstrip("0")
if v.tzinfo:
result += "Z"
return result
[docs]class Date(AbstractCDataType):
"""
Implement the Date type from :xep:`0082`.
Values must have the :class:`date` type, :class:`datetime` is forbidden to
avoid silent loss of information.
.. versionadded:: 0.5
"""
def parse(self, s):
return datetime.strptime(s, "%Y-%m-%d").date()
def coerce(self, v):
if not isinstance(v, date) or isinstance(v, datetime):
raise TypeError("must be a date object")
return v
[docs]class Time(AbstractCDataType):
"""
Implement the Time type from :xep:`0082`.
Values must have the :class:`time` type, :class:`datetime` is forbidden to
avoid silent loss of information. Assignment of :class:`time` values in
time zones which are not UTC is not allowed either. The reason is that the
translation to UTC on formatting is not properly defined without an
accompanying date (think daylight saving time transitions, redefinitions of
time zones, …).
.. versionadded:: 0.5
"""
def parse(self, v):
v = v.strip()
m = DateTime.tzextract.search(v)
if m:
_, utc, hour_offset, minute_offset = m.groups()
if utc:
hour_offset = 0
minute_offset = 0
else:
hour_offset = int(hour_offset)
minute_offset = int(minute_offset)
tzinfo = pytz.utc
offset = timedelta(minutes=minute_offset + 60 * hour_offset)
v = v[:m.start()]
else:
tzinfo = None
offset = timedelta(0)
try:
dt = datetime.strptime(v, "%H:%M:%S.%f")
except ValueError:
dt = datetime.strptime(v, "%H:%M:%S")
return (dt.replace(tzinfo=tzinfo) - offset).timetz()
def format(self, v):
if v.tzinfo:
v = pytz.utc.normalize(v)
result = v.strftime("%H:%M:%S")
if v.microsecond:
result += ".{:06d}".format(v.microsecond).rstrip("0")
if v.tzinfo:
result += "Z"
return result
def coerce(self, t):
if not isinstance(t, time):
raise TypeError("must be a time object")
if t.tzinfo is None:
return t
if t.tzinfo == pytz.utc:
return t
raise ValueError("time must have UTC timezone or none at all")
class _BinaryType(AbstractCDataType):
"""
Implements pointful coercion for binary types.
"""
def coerce(self, v):
if isinstance(v, bytes):
return v
elif isinstance(v, (bytearray, array.array)):
return bytes(v)
raise TypeError("must be convertible to bytes")
[docs]class Base64Binary(_BinaryType):
"""
Parse the value as base64 and return the :class:`bytes` object obtained
from decoding.
If `empty_as_equal` is :data:`True`, an empty value is represented using a
single equal sign. This is used in the SASL protocol.
"""
def __init__(self, *, empty_as_equal=False):
super().__init__()
self._empty_as_equal = empty_as_equal
def parse(self, v):
return base64.b64decode(v)
def format(self, v):
if self._empty_as_equal and not v:
return "="
return base64.b64encode(v).decode("ascii")
[docs]class HexBinary(_BinaryType):
"""
Parse the value as hexadecimal blob and return the :class:`bytes` object
obtained from decoding.
"""
def parse(self, v):
return binascii.a2b_hex(v)
def format(self, v):
return binascii.b2a_hex(v).decode("ascii")
[docs]class JID(AbstractCDataType):
"""
Parse the value as Jabber ID using :meth:`~aioxmpp.JID.fromstr` and
return the :class:`aioxmpp.JID` object.
`strict` is passed to :meth:`~aioxmpp.JID.fromstr` and defaults to
false. See the :meth:`~aioxmpp.JID.fromstr` method for a rationale
and consider that :meth:`parse` is only called for input coming from the
outside.
"""
def __init__(self, *, strict=False):
super().__init__()
self.strict = strict
def coerce(self, v):
if not isinstance(v, structs.JID):
raise TypeError("{} object {!r} is not a JID".format(
type(v), v))
return v
def parse(self, v):
return structs.JID.fromstr(v, strict=self.strict)
[docs]class ConnectionLocation(AbstractCDataType):
"""
Parse the value as a host-port pair, as for example used for Stream
Management reconnection location advisories.
"""
def coerce(self, v):
if not isinstance(v, tuple):
raise TypeError("2-tuple required for ConnectionLocation")
if len(v) != 2:
raise TypeError("2-tuple required for ConnectionLocation")
addr, port = v
if not isinstance(port, numbers.Integral):
raise TypeError("port number must be integral number")
port = int(port)
if not (0 <= port <= 65535):
raise ValueError("port number {} out of range".format(port))
try:
addr = ipaddress.IPv4Address(addr)
except ValueError:
try:
addr = ipaddress.IPv6Address(addr)
except ValueError:
pass
return (addr, port)
def parse(self, v):
v = v.strip()
if v.endswith("]"):
# IPv6 address without port number
if not v.startswith("["):
raise ValueError(
"IPv6 address must be encapsulated in square brackets"
)
return self.coerce((
ipaddress.IPv6Address(v[1:-1]),
5222
))
addr, sep, port = v.rpartition(":")
if sep:
port = int(port)
else:
# with rpartition, the stuff is on the RHS when the separator was
# not found
addr = port
port = 5222
if addr.startswith("[") and addr.endswith("]"):
addr = ipaddress.IPv6Address(addr[1:-1])
elif ":" in addr:
raise ValueError(
"IPv6 address must be encapsulated in square brackets"
)
try:
addr = ipaddress.IPv4Address(addr)
except ValueError:
pass
return self.coerce((addr, port))
def format(self, v):
if isinstance(v[0], ipaddress.IPv6Address):
return "[{}]:{}".format(*v)
return ":".join(map(str, v))
[docs]class LanguageTag(AbstractCDataType):
"""
Parses the value as Language Tag using
:meth:`~.structs.LanguageTag.fromstr`.
Type coercion requires that any value assigned to a descriptor using this
type is an instance of :class:`~.structs.LanguageTag`.
"""
def parse(self, v):
return structs.LanguageTag.fromstr(v)
def coerce(self, v):
if not isinstance(v, structs.LanguageTag):
raise TypeError("{!r} is not a LanguageTag", v)
return v
[docs]class TextChildMap(AbstractElementType):
"""
A type for use with :class:`.xso.ChildValueMap` and descendants of
:class:`.xso.AbstractTextChild`.
This type performs the packing and unpacking of language-text-pairs to and
from the `xso_type`. `xso_type` must have an interface compatible with
:class:`.xso.AbstractTextChild`, which means that it must have the language
and text at :attr:`~.xso.AbstractTextChild.lang` and
:attr:`~.xso.AbstractTextChild.text`, respectively and support the
same-named keyword arguments for those attributes at the consturctor.
For an example see the source of :class:`aioxmpp.Message`.
.. versionadded:: 0.5
"""
def __init__(self, xso_type):
super().__init__()
self.xso_type = xso_type
def get_xso_types(self):
return [self.xso_type]
def unpack(self, obj):
return obj.lang, obj.text
def pack(self, item):
lang, text = item
xso = self.xso_type(text=text, lang=lang)
return xso
[docs]class EnumCDataType(AbstractCDataType):
"""
Use an :class:`enum.Enum` as type for an XSO descriptor.
:param enum_class: The :class:`~enum.Enum` to use as type.
:param nested_type: A type which can handle the values of the enumeration
members.
:type nested_type: :class:`AbstractCDataType`
:param allow_coerce: Allow coercion of different types to enumeration
values.
:type allow_coerce: :class:`bool`
:param deprecate_coerce: Emit :class:`DeprecationWarning` when coercion
occurs. Requires (but does not imply)
`allow_coerce`.
:type deprecate_coerce: :class:`int` or :class:`bool`
:param allow_unknown: If true, unknown values are converted to
:class:`Unknown` instances when parsing values from
the XML stream.
:type allow_unknown: :class:`bool`
:param accept_unknown: If true, :class:`Unknown` instances are passed
through :meth:`coerce` and can thus be assigned to
descriptors using this type.
:type accept_unknown: :class:`bool`
:param pass_unknown: If true, unknown values are accepted unmodified (both
on the receiving and on the sending side). It is useful for some
:class:`enum.IntEnum` use cases.
:type pass_unknown: :class:`bool`
A descriptor using this type will accept elements from the given
`enum_class` as values. Upon serialisiation, the :attr:`value` of the
enumeration element is taken and formatted through the given `nested_type`.
Normally, :meth:`coerce` will raise :class:`TypeError` for any value which
is not an instance of `enum_class`. However, if `allow_coerce` is true, the
value is passed to the `enum_class` constructor and the result is returned;
the :class:`ValueError` raised from the `enum_class` constructor if an
invalid value is passed propagates unmodified.
.. note::
When using `allow_coerce`, keep in mind that this may have surprising
effects for users. Coercion means that the value assigned to an
attribute and the value subsequently read from that attribute may not
be the same; this may be very surprising to users::
class E(enum.Enum):
X = "foo"
class SomeXSO(xso.XSO):
attr = xso.Attr("foo", xso.EnumCDataType(E, allow_coerce=True))
x = SomeXSO()
x.attr = "foo"
assert x.attr == "foo" # assertion fails!
To allow coercion transitionally while moving from e.g. string-based values
to a proper enum, `deprecate_coerce` can be used. In that case, a
:class:`DeprecationWarning` (see :mod:`warnings`) is emitted when coercion
takes place, to warn users about future removal of the coercion capability.
If `deprecate_coerce` is an integer, it is used as the stacklevel argument
for the :func:`warnings.warn` call. If it is :data:`True`, the stacklevel
is 4, which leads to the warning pointing to a descriptor assignment when
used with XSO descriptors.
Handling of :class:`Unknown` values: Using `allow_unknown` and
`accept_unknown` is advisable to stay compatible with future protocols,
which is why both are enabled by default. Considering that constructing an
:class:`Unknown` value needs to be done explicitly in code, it is unlikely
that a user will *accidentally* assign an unspecified value to a descriptor
using this type with `accept_unknown`.
`pass_unknown` requires `allow_unknown` and `accept_unknown`. When set to
true, values which are not a member of `enum_class` are used without
modification (but they are validated against the `nested_type`). This
applies to both the sending and the receiving side. The intended use case
is with :class:`enum.IntEnum` classes. If a :class:`Unknown` value is
passed, it is unwrapped and treated as if the original value had been
passed.
Example::
class SomeEnum(enum.Enum):
X = 1
Y = 2
Z = 3
class SomeXSO(xso.XSO):
attr = xso.Attr(
"foo",
type_=xso.EnumCDataType(
SomeEnum,
# have to use integer, because the value of e.g. SomeEnum.X
# is integer!
xso.Integer()
),
)
.. versionchanged:: 0.10
Support for `pass_unknown` was added.
"""
def __init__(self, enum_class, nested_type=String(), *,
allow_coerce=False,
deprecate_coerce=False,
allow_unknown=True,
accept_unknown=True,
pass_unknown=False):
if pass_unknown and (not allow_unknown or not accept_unknown):
raise ValueError(
"pass_unknown requires allow_unknown and accept_unknown"
)
super().__init__()
self.nested_type = nested_type
self.enum_class = enum_class
self.allow_coerce = allow_coerce
self.deprecate_coerce = deprecate_coerce
self.accept_unknown = accept_unknown
self.allow_unknown = allow_unknown
self.pass_unknown = pass_unknown
def coerce(self, value):
if (not self.pass_unknown and self.accept_unknown and
isinstance(value, Unknown)):
return value
if self.allow_coerce:
if self.deprecate_coerce:
if isinstance(value, self.enum_class):
return value
stacklevel = (4 if self.deprecate_coerce is True
else self.deprecate_coerce)
warnings.warn(
"assignment of non-enum values to this descriptor is"
" deprecated",
DeprecationWarning,
stacklevel=stacklevel,
)
value = self.nested_type.coerce(value)
try:
return self.enum_class(value)
except ValueError:
if self.pass_unknown:
return value
raise
if isinstance(value, self.enum_class):
return value
if self.pass_unknown:
value = self.nested_type.coerce(value)
return value
raise TypeError("not a valid {} value: {!r}".format(
self.enum_class,
value,
))
def parse(self, s):
parsed = self.nested_type.parse(s)
try:
return self.enum_class(parsed)
except ValueError:
if self.pass_unknown:
return parsed
if self.allow_unknown:
return Unknown(parsed)
raise
def format(self, v):
if self.pass_unknown and not isinstance(v, self.enum_class):
return self.nested_type.format(v)
return self.nested_type.format(v.value)
[docs]class EnumElementType(AbstractElementType):
"""
Use an :class:`enum.Enum` as type for an XSO descriptor.
:param enum_class: The :class:`~enum.Enum` to use as type.
:param nested_type: Type which describes the value type of the
`enum_class`.
:type nested_type: :class:`AbstractElementType`
:param allow_coerce: Allow coercion of different types to enumeration
values.
:type allow_coerce: :class:`bool`
:param deprecate_coerce: Emit :class:`DeprecationWarning` when coercion
occurs. Requires (but does not imply)
`allow_coerce`.
:type deprecate_coerce: :class:`int` or :class:`bool`
:param allow_unknown: If true, unknown values are converted to
:class:`Unknown` instances when parsing values from
the XML stream.
:type allow_unknown: :class:`bool`
:param accept_unknown: If true, :class:`Unknown` instances are passed
through :meth:`coerce` and can thus be assigned to
descriptors using this type.
:type allow_unknown: :class:`bool`
A descriptor using this type will accept elements from the given
`enum_class` as values. Upon serialisiation, the :attr:`value` of the
enumeration element is taken and packed through the given `nested_type`.
Normally, :meth:`coerce` will raise :class:`TypeError` for any value which
is not an instance of `enum_class`. However, if `allow_coerce` is true, the
value is passed to the `enum_class` constructor and the result is returned;
the :class:`ValueError` raised from the `enum_class` constructor if an
invalid value is passed propagates unmodified.
.. seealso::
:class:`EnumCDataType`
for a detailed discussion on the implications of coercion.
Handling of :class:`Unknown` values: Using `allow_unknown` and
`accept_unknown` is advisable to stay compatible with future protocols,
which is why both are enabled by default. Considering that constructing an
:class:`Unknown` value needs to be done explicitly in code, it is unlikely
that a user will *accidentally* assign an unspecified value to a descriptor
using this type with `accept_unknown`.
"""
def __init__(self, enum_class, nested_type, *,
allow_coerce=False,
deprecate_coerce=False,
allow_unknown=True,
accept_unknown=True):
super().__init__()
self.nested_type = nested_type
self.enum_class = enum_class
self.allow_coerce = allow_coerce
self.deprecate_coerce = deprecate_coerce
self.accept_unknown = accept_unknown
self.allow_unknown = allow_unknown
def get_xso_types(self):
return self.nested_type.get_xso_types()
def coerce(self, value):
if self.accept_unknown and isinstance(value, Unknown):
return value
if self.allow_coerce:
if self.deprecate_coerce:
if isinstance(value, self.enum_class):
return value
stacklevel = (4 if self.deprecate_coerce is True
else self.deprecate_coerce)
warnings.warn(
"assignment of non-enum values to this descriptor is"
" deprecated",
DeprecationWarning,
stacklevel=stacklevel,
)
return self.enum_class(value)
if isinstance(value, self.enum_class):
return value
raise TypeError("not a valid {} value: {!r}".format(
self.enum_class,
value,
))
def unpack(self, s):
parsed = self.nested_type.unpack(s)
try:
return self.enum_class(parsed)
except ValueError:
if self.allow_unknown:
return Unknown(parsed)
raise
def pack(self, v):
return self.nested_type.pack(v.value)
[docs]class AbstractValidator(metaclass=abc.ABCMeta):
"""
This is the interface all validators must implement. In addition, a
validators documentation should clearly state on which types it operates.
.. automethod:: validate
.. automethod:: validate_detailed
"""
[docs] def validate(self, value):
"""
Return :data:`True` if the `value` adheres to the restrictions imposed
by this validator and :data:`False` otherwise.
By default, this method calls :meth:`validate_detailed` and returns
:data:`True` if :meth:`validate_detailed` returned an empty result.
"""
return not self.validate_detailed(value)
[docs] @abc.abstractmethod
def validate_detailed(self, value):
"""
Return an empty list if the `value` adheres to the restrictions imposed
by this validator.
If the value does not comply, return a list of
:class:`~aioxmpp.errors.UserValueError` instances which each represent
a condition which was violated in a human-readable way.
"""
[docs]class RestrictToSet(AbstractValidator):
"""
Restrict the possible values to the values from `values`. Operates on any
types.
"""
def __init__(self, values):
self.values = frozenset(values)
def validate_detailed(self, value):
from ..errors import UserValueError
if value not in self.values:
return [
UserValueError(i18n._("{} is not an allowed value"),
value)
]
return []
[docs]class Nmtoken(AbstractValidator):
"""
Restrict the possible strings to the NMTOKEN specification of XML Schema
Definitions. The validator only works with strings.
.. warning::
This validator is probably incorrect. It is a good first line of defense
to avoid creating obvious incorrect output and should not be used as
input validator.
It most likely falsely rejects valid values and may let through invalid
values.
"""
VALID_CATS = {
"Ll", "Lu", "Lo", "Lt", "Nl", # Name start
"Mc", "Me", "Mn", "Lm", "Nd", # Name without name start
}
ADDITIONAL = frozenset(":_.-\u06dd\u06de\u06df\u00b7\u0387\u212e")
UCD = unicodedata.ucd_3_2_0
@classmethod
def _validate_chr(cls, c):
if c in cls.ADDITIONAL:
return True
if 0xf900 < ord(c) < 0xfffe:
return False
if 0x20dd <= ord(c) <= 0x20e0:
return False
if cls.UCD.category(c) not in cls.VALID_CATS:
return False
return True
def validate_detailed(self, value):
from ..errors import UserValueError
if not all(map(self._validate_chr, value)):
return [
UserValueError(i18n._("{} is not a valid NMTOKEN"),
value)
]
return []
[docs]class IsInstance(AbstractValidator):
"""
This validator checks that the value is an instance of any of the classes
given in `valid_classes`.
`valid_classes` is *not* copied into the :class:`IsInstance` instance, but
instead shared; it can be mutated after the construction of
:class:`IsInstance` to allow addition and removal of classes.
"""
def __init__(self, valid_classes):
self.classes = valid_classes
def validate_detailed(self, v):
from ..errors import UserValueError
if not isinstance(v, tuple(self.classes)):
return [
UserValueError(
i18n._("{} is of incorrect type (must be one of {})"),
v,
", ".join(type_.__name__
for type_ in self.classes)
)
]
return []
[docs]class NumericRange(AbstractValidator):
"""
To be used with orderable types, such as :class:`.DateTime` or
:class:`.Integer`.
The value is enforced to be within *[min, max]* (this is the interval from
`min_` to `max_`, including both ends).
Setting `min_` or `max_` to :data:`None` disables enforcement of that end
of the interval. A common use is ``NumericRange(min_=1)`` in conjunction
with :class:`.Integer` to enforce the use of positive integers.
.. versionadded:: 0.6
"""
def __init__(self, min_=None, max_=None):
super().__init__()
self.min_ = min_
self.max_ = max_
def validate_detailed(self, v):
from ..errors import UserValueError
if self.min_ is None:
if self.max_ is None:
return []
if not v <= self.max_:
return [
UserValueError(
i18n._("{} is too large (max is {})"),
v,
self.max_
)
]
elif self.max_ is None:
if not self.min_ <= v:
return [
UserValueError(
i18n._("{} is too small (min is {})"),
v,
self.max_
)
]
elif not self.min_ <= v <= self.max_:
return [
UserValueError(
i18n._("{} is out of bounds ({}..{})"),
v,
self.min_,
self.max_
)
]
return []
_Undefined = object()
[docs]def EnumType(enum_class, nested_type=_Undefined, **kwargs):
"""
Create and return a :class:`EnumCDataType` or :class:`EnumElementType`,
depending on the type of `nested_type`.
If `nested_type` is a :class:`AbstractCDataType` or omitted, a
:class:`EnumCDataType` is constructed. Otherwise, :class:`EnumElementType`
is used.
The arguments are forwarded to the respective class’ constructor.
.. versionadded:: 0.10
.. deprecated:: 0.10
This function was introduced to ease the transition in 0.10 from
a unified :class:`EnumType` to split :class:`EnumCDataType` and
:class:`EnumElementType`.
It will be removed in 1.0.
"""
if nested_type is _Undefined:
return EnumCDataType(enum_class, **kwargs)
if isinstance(nested_type, AbstractCDataType):
return EnumCDataType(enum_class, nested_type, **kwargs)
else:
return EnumElementType(enum_class, nested_type, **kwargs)