########################################################################
# File name: service.py
# This file is part of: aioxmpp
#
# LICENSE
#
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU Lesser General Public License as
# published by the Free Software Foundation, either version 3 of the
# License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful, but
# WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
# Lesser General Public License for more details.
#
# You should have received a copy of the GNU Lesser General Public
# License along with this program. If not, see
# <http://www.gnu.org/licenses/>.
#
########################################################################
"""
:mod:`~aioxmpp.service` --- Utilities for implementing :class:`~.Client` services
#################################################################################
Protocol extensions or in general support for parts of the XMPP protocol are
implemented using :class:`Service` classes, or rather, classes which use the
:class:`Meta` metaclass.
Both of these are provided in this module. To reduce the boilerplate required
to develop services, :ref:`decorators <api-aioxmpp.service-decorators>` are
provided which can be used to easily register coroutines and functions as
stanza handlers, filters and others.
.. autoclass:: Service
.. _api-aioxmpp.service-decorators:
Decorators and Descriptors
==========================
These decorators provide special functionality when used on methods of
:class:`Service` subclasses.
.. note::
These decorators work only on methods declared on :class:`Service`
subclasses, as their functionality are implemented in cooperation with the
:class:`Meta` metaclass and :class:`Service` itself.
.. note::
These decorators and the descriptors (see below) are initialised in the
order in which they are declared at the class. In many cases, this does
not matter, but there are some corner cases.
For example: Suppose you have a class like this:
.. code-block:: python
class FooService(aioxmpp.service.Service):
feature = aioxmpp.disco.register_feature(
"some:namespace"
)
@aioxmpp.servie.depsignal(aioxmpp.DiscoServer, "on_info_changed")
def handle_on_info_changed(self):
pass
In this case, the ``handle_on_info_changed`` method is not invoked during
startup of the ``FooService``. In this case however:
.. code-block:: python
class FooService(aioxmpp.service.Service):
@aioxmpp.servie.depsignal(aioxmpp.DiscoServer, "on_info_changed")
def handle_on_info_changed(self):
pass
feature = aioxmpp.disco.register_feature(
"some:namespace"
)
The ``handle_on_info_changed`` *is* invoked during startup of the
``FooService`` because the ``some:namespace`` feature is registered
*after* the signal is connected.
.. versionchanged:: 0.9
This behaviour was introduced in version 0.9.
When using a descriptor and a :func:`depsignal`
connected to :meth:`.DiscoServer.on_info_changed`: if the
:class:`.disco.register_feature` is declared *before* the :func:`depsignal`,
the signal handler will not be invoked for that specific feature because
it is registered before the signal handler is connected).
.. autodecorator:: iq_handler
.. autodecorator:: message_handler
.. autodecorator:: presence_handler
.. autodecorator:: inbound_message_filter()
.. autodecorator:: inbound_presence_filter()
.. autodecorator:: outbound_message_filter()
.. autodecorator:: outbound_presence_filter()
.. autodecorator:: depsignal
.. autodecorator:: depfilter
.. autodecorator:: attrsignal
.. seealso::
:class:`~.disco.register_feature`
For a descriptor (see below) which allows to register a Service Discovery
feature when the service is instantiated.
:class:`~.disco.mount_as_node`
For a descriptor (see below) which allows to register a Service Discovery
node when the service is instantiated.
:class:`~.pep.register_pep_node`
For a descriptor (see below) which allows to register a PEP node
including notification features.
Test functions
--------------
.. autofunction:: is_iq_handler
.. autofunction:: is_message_handler
.. autofunction:: is_presence_handler
.. autofunction:: is_inbound_message_filter
.. autofunction:: is_inbound_presence_filter
.. autofunction:: is_outbound_message_filter
.. autofunction:: is_outbound_presence_filter
.. autofunction:: is_depsignal_handler
.. autofunction:: is_depfilter_handler
.. autofunction:: is_attrsignal_handler
Creating your own decorators
----------------------------
Sometimes, when you create your own service, it makes sense to create own
decorators which depending services can use to make easy use of some features
of your service.
.. note::
Remember that it isn’t necessary to create custom decorators to simply
connect a method to a signal exposed by another service. Users of that
service should be using :func:`depsignal` instead.
The key part is the :class:`HandlerSpec` object. It specifies the effect the
decorator has on initialisation and shutdown of the service. To add a
:class:`HandlerSpec` to a decorated method, use :func:`add_handler_spec` in the
implementation of your decorator.
.. autoclass:: HandlerSpec(key, is_unique=True, require_deps=[])
.. autofunction:: add_handler_spec
Creating your own descriptors
-----------------------------
Sometimes a decorator is not the right tool for the job, because with what you
attempt to achieve, there’s simply no relationship to a method.
In this case, subclassing :class:`Descriptor` is the way to go. It provides an
abstract base class implementing a :term:`descriptor`. Using a
:class:`Descriptor` subclass, you can create objects for each individual
service instance using the descriptor, including cleanup.
.. autoclass:: Descriptor
Metaclass
=========
.. autoclass:: Meta()
"""
import abc
import asyncio
import collections
import contextlib
import copy
import logging
import warnings
import weakref
import aioxmpp.callbacks
import aioxmpp.stream
def automake_magic_attr(obj):
obj._aioxmpp_service_handlers = getattr(
obj, "_aioxmpp_service_handlers", set()
)
return obj._aioxmpp_service_handlers
def get_magic_attr(obj):
return obj._aioxmpp_service_handlers
def has_magic_attr(obj):
return hasattr(
obj, "_aioxmpp_service_handlers"
)
[docs]class Descriptor(metaclass=abc.ABCMeta):
"""
Abstract base class for resource managing descriptors on :class:`Service`
classes.
While resources such as callback slots can easily be managed with
decorators (see above), because they are inherently related to the method
they use, others cannot. A :class:`Descriptor` provides a method to
initialise a context manager. The context manager is entered when the
service is initialised and left when the service is shut down, thus
providing a way for the :class:`Descriptor` to manage the resource
associated with it.
The result from entering the context manager is accessible by reading the
attribute the descriptor is bound to.
Subclasses must implement the following:
.. automethod:: init_cm
.. autoattribute:: value_type
Subclasses may override the following to modify the default behaviour:
.. autoattribute:: required_dependencies
.. automethod:: add_to_stack
"""
def __init__(self, *args, **kwargs):
super().__init__(*args, **kwargs)
self._data = weakref.WeakKeyDictionary()
@property
def required_dependencies(self):
"""
Iterable of services which must be declared as dependencies on a class
using this descriptor.
The default implementation returns an empty list.
"""
return []
[docs] @abc.abstractmethod
def init_cm(self, instance):
"""
Create and return a :term:`context manager`.
:param instance: The service instance for which the CM is used.
:return: A context manager managing the resource.
The context manager is responsible for acquiring, initialising,
destructing and releasing the resource managed by this descriptor.
The returned context manager is not stored anywhere in the descriptor,
it is the responsibility of the caller to register it appropriately.
"""
[docs] def add_to_stack(self, instance, stack):
"""
Get the context manager for the service `instance` and push it to the
context manager `stack`.
:param instance: The service to get the context manager for.
:type instance: :class:`Service`
:param stack: The context manager stack to push the CM onto.
:type stack: :class:`contextlib.ExitStack`
:return: The object returned by the context manager on enter.
If a context manager has already been created for `instance`, it is
re-used.
On subsequent calls to :meth:`__get__` for the given `instance`, the
return value of this method will be returned, that is, the value
obtained from entering the context.
"""
cm = self.init_cm(instance)
obj = stack.enter_context(cm)
self._data[instance] = cm, obj
return obj
def __get__(self, instance, owner):
if instance is None:
return self
try:
cm, obj = self._data[instance]
except KeyError:
raise AttributeError(
"resource manager descriptor has not been initialised"
)
return obj
@abc.abstractproperty
def value_type(self):
"""
The type of the value of the descriptor, once it is being accessed
as an object attribute.
.. versionadded:: 0.9
"""
class DependencyGraphNode:
def __init__(self):
self.class_ = None
def __repr__(self):
return "DependencyGraphNode({!r})".format(self.class_)
class DependencyGraph:
def __init__(self, edges=None, nodes=None):
if edges is None:
edges = []
if nodes is None:
nodes = []
self._edges = set(edges)
self._nodes = set(nodes)
def __deepcopy__(self, memo):
return DependencyGraph(self._edges, self._nodes)
def add_node(self, node):
self._nodes.add(node)
def add_edge(self, from_, to):
self._edges.add((from_, to))
def toposort(self):
edges = collections.defaultdict(lambda: set())
for from_, to in self._edges:
edges[from_].add(to)
sorted_ = []
marked = set()
done = set()
def visit(node):
if node in marked:
raise ValueError("dependency loop in service definitions")
if node in done:
return
done.add(node)
marked.add(node)
for dep in edges[node]:
visit(dep)
marked.remove(node)
sorted_.append(node)
for node in self._nodes:
visit(node)
return sorted_
[docs]class Service(metaclass=Meta):
"""
A :class:`Service` is used to implement XMPP or XEP protocol parts, on top
of the more or less fixed stanza handling implemented in
:mod:`aioxmpp.node` and :mod:`aioxmpp.stream`.
:class:`Service` is a base class which can be used by extension developers
to implement support for custom or standardized protocol extensions. Some
of the features for which :mod:`aioxmpp` has support are also implemented
using :class:`Service` subclasses.
`client` must be a :class:`~.Client` to which the service will be attached.
The `client` cannot be changed later, for the sake of simplicity.
`logger_base` may be a :class:`logging.Logger` instance or :data:`None`. If
it is :data:`None`, a logger is automatically created, by taking the fully
qualified name of the :class:`Service` subclass which is being
instanciated. Otherwise, the logger is passed to :meth:`derive_logger` and
the result is used as value for the :attr:`logger` attribute.
To implement your own service, derive from :class:`Service`. If your
service depends on other services (such as :mod:`aioxmpp.pubsub` or
:mod:`aioxmpp.disco`), these dependencies *must* be declared as documented
in the service meta class :class:`Meta`.
To stay forward compatible, accept arbitrary keyword arguments and pass
them down to :class:`Service`. As it is not possible to directly pass
arguments to :class:`Service`\ s on construction (due to the way
:meth:`aioxmpp.Client.summon` works), there is no need for you
to introduce custom arguments, and thus there should be no conflicts.
.. note::
Inheritance from classes which subclass :class:`Service` is forbidden.
.. versionchanged:: 0.9
.. autoattribute:: client
.. autoattribute:: dependencies
.. automethod:: derive_logger
.. automethod:: shutdown
"""
def __init__(self, client, *, logger_base=None, dependencies={}):
if logger_base is None:
self.logger = logging.getLogger(".".join([
type(self).__module__, type(self).__qualname__
]))
else:
self.logger = self.derive_logger(logger_base)
super().__init__()
self.__context = contextlib.ExitStack()
self.__client = client
self.__dependencies = dependencies
for item in self.SERVICE_HANDLERS:
if isinstance(item, Descriptor):
item.add_to_stack(self, self.__context)
else:
(handler_cm, additional_args), obj = item
self.__context.enter_context(
handler_cm(
self,
self.__client.stream,
obj.__get__(self, type(self)),
*additional_args
)
)
[docs] def derive_logger(self, logger):
"""
Return a child of `logger` specific for this instance. This is called
after :attr:`client` has been set, from the constructor.
The child name is calculated by the default implementation in a way
specific for aioxmpp services; it is not meant to be used by
non-:mod:`aioxmpp` classes; do not rely on the way how the child name
is calculated.
"""
parts = type(self).__module__.split(".")[1:]
if parts[-1] == "service" and len(parts) > 1:
del parts[-1]
return logger.getChild(".".join(
parts+[type(self).__qualname__]
))
@property
def client(self):
"""
The client to which the :class:`Service` is bound. This attribute is
read-only.
If the service has been shut down using :meth:`shutdown`, this reads as
:data:`None`.
"""
return self.__client
@property
def dependencies(self):
"""
When the service is instantiated through
:meth:`~.Client.summon`, this attribute holds a mapping which maps the
service classes contained in the :attr:`~.Meta.ORDER_AFTER` attribute
to the respective instances related to the :attr:`client`.
This is the preferred way to obtain dependencies specified via
:attr:`~.Meta.ORDER_AFTER`.
"""
return self.__dependencies
@asyncio.coroutine
def _shutdown(self):
"""
Actual implementation of the shut down process.
This *must* be called using super from inheriting classes after their
own shutdown procedure. Inheriting classes *must* override this method
instead of :meth:`shutdown`.
"""
[docs] @asyncio.coroutine
def shutdown(self):
"""
Close the service and wait for it to completely shut down.
Some services which are still running may depend on this service. In
that case, the service may refuse to shut down instead of shutting
down, by raising a :class:`RuntimeError` exception.
.. note::
Developers creating subclasses of :class:`Service` to implement
services should not override this method. Instead, they should
override the :meth:`_shutdown` method.
"""
yield from self._shutdown()
self.__context.close()
self.__client = None
[docs]class HandlerSpec(collections.namedtuple(
"HandlerSpec",
[
"is_unique",
"key",
"require_deps",
])):
"""
Specification of the effects of the decorator at initalisation and shutdown
time.
:param key: Context manager and arguments pair.
:type key: pair
:param is_unique: Whether multiple identical `key` values are allowed on a
single class.
:type is_unique: :class:`bool`
:param require_deps: Dependent services which are required for the
decorator to work.
:type require_deps: iterable of :class:`Service` classes
During initialisation of the :class:`Service` which has a method using a
given handler spec, the first part of the `key` pair is called with the
service instance as first, the client :class:`StanzaStream` as second and
the bound method as third argument. The second part of the `key` is
unpacked as additional positional arguments.
The result of the call must be a context manager, which is immediately
entered. On shutdown, the context manager is exited.
An example use would be the following handler spec::
HandlerSpec(
(func, (IQType.GET, some_payload_class)),
is_unique=True,
)
where ``func`` is a context manager which takes a service instance, a
stanza stream, a bound method as well as an IQ type and a payload class. On
enter, the context manager would register the method it received as third
argument on the stanza stream (second argument) as handler for the given IQ
type and payload class (fourth and fifth arguments).
If `is_unique` is true and several methods have :class:`HandlerSpec`
objects with the same `key`, :class:`TypeError` is raised at class
definition time.
If at class definition time any of the dependent classes in `require_deps`
are not declared using the order attributes (see :class:`Meta`), a
:class:`TypeError` is raised.
"""
def __new__(cls, key, is_unique=True, require_deps=()):
return super().__new__(cls, is_unique, key, frozenset(require_deps))
[docs]def add_handler_spec(f, handler_spec):
"""
Attach a handler specification (see :class:`HandlerSpec`) to a function.
:param f: Function to attach the handler specification to.
:param handler_spec: Handler specification to attach to the function.
:type handler_spec: :class:`HandlerSpec`
This uses a private attribute, whose exact name is an implementation
detail. The `handler_spec` is stored in a :class:`set` bound to the
attribute.
"""
automake_magic_attr(f).add(handler_spec)
def _apply_iq_handler(instance, stream, func, type_, payload_cls):
return aioxmpp.stream.iq_handler(stream, type_, payload_cls, func)
def _apply_presence_handler(instance, stream, func, type_, from_):
return aioxmpp.stream.presence_handler(stream, type_, from_, func)
def _apply_inbound_message_filter(instance, stream, func):
return aioxmpp.stream.stanza_filter(
stream.service_inbound_message_filter,
func,
type(instance),
)
def _apply_inbound_presence_filter(instance, stream, func):
return aioxmpp.stream.stanza_filter(
stream.service_inbound_presence_filter,
func,
type(instance),
)
def _apply_outbound_message_filter(instance, stream, func):
return aioxmpp.stream.stanza_filter(
stream.service_outbound_message_filter,
func,
type(instance),
)
def _apply_outbound_presence_filter(instance, stream, func):
return aioxmpp.stream.stanza_filter(
stream.service_outbound_presence_filter,
func,
type(instance),
)
def _apply_connect_depsignal(instance, stream, func, dependency, signal_name,
mode):
if dependency is aioxmpp.stream.StanzaStream:
dependency = instance.client.stream
elif dependency is aioxmpp.node.Client:
dependency = instance.client
else:
dependency = instance.dependencies[dependency]
signal = getattr(dependency, signal_name)
if mode is None:
return signal.context_connect(func)
else:
try:
mode_func, args = mode
except TypeError:
pass
else:
mode = mode_func(*args)
return signal.context_connect(func, mode)
def _apply_connect_depfilter(instance, stream, func, dependency, filter_name):
if dependency is aioxmpp.stream.StanzaStream:
dependency = instance.client.stream
else:
dependency = instance.dependencies[dependency]
filter_ = getattr(dependency, filter_name)
return filter_.context_register(func, type(instance))
def _apply_connect_attrsignal(instance, stream, func, descriptor, signal_name,
mode):
obj = descriptor.__get__(instance, type(instance))
signal = getattr(obj, signal_name)
if mode is None:
return signal.context_connect(func)
else:
try:
mode_func, args = mode
except TypeError:
pass
else:
mode = mode_func(*args)
return signal.context_connect(func, mode)
[docs]def iq_handler(type_, payload_cls):
"""
Register the decorated function or coroutine function as IQ request
handler.
:param type_: IQ type to listen for
:type type_: :class:`~.IQType`
:param payload_cls: Payload XSO class to listen for
:type payload_cls: :class:`~.XSO` subclass
:raises ValueError: if `payload_cls` is not a registered IQ payload
If the decorated function is not a coroutine function, it must return an
awaitable instead.
.. seealso::
:meth:`~.StanzaStream.register_iq_request_handler`
for more details on the `type_` and `payload_cls` arguments, as well
as behaviour expected from the decorated function.
:meth:`aioxmpp.IQ.as_payload_class`
for a way to register a XSO as IQ payload
.. versionchanged:: 0.10
The decorator now checks if `payload_cls` is a valid, registered IQ
payload and raises :class:`ValueError` if not.
"""
if (not hasattr(payload_cls, "TAG") or
(aioxmpp.IQ.CHILD_MAP.get(payload_cls.TAG) is not
aioxmpp.IQ.payload.xq_descriptor) or
payload_cls not in aioxmpp.IQ.payload._classes):
raise ValueError(
"{!r} is not a valid IQ payload "
"(use IQ.as_payload_class decorator)".format(
payload_cls,
)
)
def decorator(f):
add_handler_spec(
f,
HandlerSpec(
(_apply_iq_handler, (type_, payload_cls)),
require_deps=()
)
)
return f
return decorator
[docs]def message_handler(type_, from_):
"""
Deprecated alias of :func:`.dispatcher.message_handler`.
.. deprecated:: 0.9
"""
import aioxmpp.dispatcher
return aioxmpp.dispatcher.message_handler(type_, from_)
[docs]def presence_handler(type_, from_):
"""
Deprecated alias of :func:`.dispatcher.presence_handler`.
.. deprecated:: 0.9
"""
import aioxmpp.dispatcher
return aioxmpp.dispatcher.presence_handler(type_, from_)
[docs]def inbound_message_filter(f):
"""
Register the decorated function as a service-level inbound message filter.
:raise TypeError: if the decorated object is a coroutine function
.. seealso::
:class:`StanzaStream`
for important remarks regarding the use of stanza filters.
"""
if asyncio.iscoroutinefunction(f):
raise TypeError(
"inbound_message_filter must not be a coroutine function"
)
add_handler_spec(
f,
HandlerSpec(
(_apply_inbound_message_filter, ())
),
)
return f
[docs]def inbound_presence_filter(f):
"""
Register the decorated function as a service-level inbound presence filter.
:raise TypeError: if the decorated object is a coroutine function
.. seealso::
:class:`StanzaStream`
for important remarks regarding the use of stanza filters.
"""
if asyncio.iscoroutinefunction(f):
raise TypeError(
"inbound_presence_filter must not be a coroutine function"
)
add_handler_spec(
f,
HandlerSpec(
(_apply_inbound_presence_filter, ())
),
)
return f
[docs]def outbound_message_filter(f):
"""
Register the decorated function as a service-level outbound message filter.
:raise TypeError: if the decorated object is a coroutine function
.. seealso::
:class:`StanzaStream`
for important remarks regarding the use of stanza filters.
"""
if asyncio.iscoroutinefunction(f):
raise TypeError(
"outbound_message_filter must not be a coroutine function"
)
add_handler_spec(
f,
HandlerSpec(
(_apply_outbound_message_filter, ())
),
)
return f
[docs]def outbound_presence_filter(f):
"""
Register the decorated function as a service-level outbound presence
filter.
:raise TypeError: if the decorated object is a coroutine function
.. seealso::
:class:`StanzaStream`
for important remarks regarding the use of stanza filters.
"""
if asyncio.iscoroutinefunction(f):
raise TypeError(
"outbound_presence_filter must not be a coroutine function"
)
add_handler_spec(
f,
HandlerSpec(
(_apply_outbound_presence_filter, ())
),
)
return f
def _signal_connect_mode(signal, f, defer):
if isinstance(signal, aioxmpp.callbacks.SyncSignal):
if not asyncio.iscoroutinefunction(f):
raise TypeError(
"a coroutine function is required for this signal"
)
if defer:
raise ValueError(
"cannot use defer with this signal"
)
mode = None
else:
if asyncio.iscoroutinefunction(f):
if defer:
mode = aioxmpp.callbacks.AdHocSignal.SPAWN_WITH_LOOP, (None,)
else:
raise TypeError(
"cannot use coroutine function with this signal"
" without defer"
)
elif defer:
mode = aioxmpp.callbacks.AdHocSignal.ASYNC_WITH_LOOP, (None,)
else:
mode = aioxmpp.callbacks.AdHocSignal.STRONG
return mode
def _depsignal_spec(class_, signal_name, f, defer):
signal = getattr(class_, signal_name)
mode = _signal_connect_mode(signal, f, defer)
if (class_ is not aioxmpp.stream.StanzaStream and
class_ is not aioxmpp.node.Client):
deps = (class_,)
else:
deps = ()
return HandlerSpec(
(
_apply_connect_depsignal,
(
class_,
signal_name,
mode,
)
),
require_deps=deps,
)
[docs]def depsignal(class_, signal_name, *, defer=False):
"""
Connect the decorated method or coroutine method to the addressed signal on
a class on which the service depends.
:param class_: A service class which is listed in the
:attr:`~.Meta.ORDER_AFTER` relationship.
:type class_: :class:`Service` class or one of the special cases below
:param signal_name: Attribute name of the signal to connect to
:type signal_name: :class:`str`
:param defer: Flag indicating whether deferred execution of the decorated
method is desired; see below for details.
:type defer: :class:`bool`
The signal is discovered by accessing the attribute with the name
`signal_name` on the given `class_`. In addition, the following arguments
are supported for `class_`:
1. :class:`aioxmpp.stream.StanzaStream`: the corresponding signal of the
stream of the client running the service is used.
2. :class:`aioxmpp.Client`: the corresponding signal of the client running
the service is used.
If the signal is a :class:`.callbacks.Signal` and `defer` is false, the
decorated object is connected using the default
:attr:`~.callbacks.AdHocSignal.STRONG` mode.
If the signal is a :class:`.callbacks.Signal` and `defer` is true and the
decorated object is a coroutine function, the
:attr:`~.callbacks.AdHocSignal.SPAWN_WITH_LOOP` mode with the default
asyncio event loop is used. If the decorated object is not a coroutine
function, :attr:`~.callbacks.AdHocSignal.ASYNC_WITH_LOOP` is used instead.
If the signal is a :class:`.callbacks.SyncSignal`, `defer` must be false
and the decorated object must be a coroutine function.
.. versionchanged:: 0.9
Support for :class:`aioxmpp.stream.StanzaStream` and
:class:`aioxmpp.Client` as `class_` argument was added.
"""
def decorator(f):
add_handler_spec(
f,
_depsignal_spec(class_, signal_name, f, defer)
)
return f
return decorator
def _attrsignal_spec(descriptor, signal_name, f, defer):
signal = getattr(descriptor.value_type, signal_name)
mode = _signal_connect_mode(signal, f, defer)
return HandlerSpec(
(
_apply_connect_attrsignal,
(
descriptor,
signal_name,
mode
)
),
is_unique=True,
require_deps=(),
)
[docs]def attrsignal(descriptor, signal_name, *, defer=False):
"""
Connect the decorated method or coroutine method to the addressed signal on
a descriptor.
:param descriptor: The descriptor to connect to.
:type descriptor: :class:`Descriptor` subclass.
:param signal_name: Attribute name of the signal to connect to
:type signal_name: :class:`str`
:param defer: Flag indicating whether deferred execution of the decorated
method is desired; see below for details.
:type defer: :class:`bool`
The signal is discovered by accessing the attribute with the name
`signal_name` on the :attr:`~Descriptor.value_type` of the `descriptor`.
During instantiation of the service, the value of the descriptor is used
to obtain the signal and then the decorated method is connected to the
signal.
If the signal is a :class:`.callbacks.Signal` and `defer` is false, the
decorated object is connected using the default
:attr:`~.callbacks.AdHocSignal.STRONG` mode.
If the signal is a :class:`.callbacks.Signal` and `defer` is true and the
decorated object is a coroutine function, the
:attr:`~.callbacks.AdHocSignal.SPAWN_WITH_LOOP` mode with the default
asyncio event loop is used. If the decorated object is not a coroutine
function, :attr:`~.callbacks.AdHocSignal.ASYNC_WITH_LOOP` is used instead.
If the signal is a :class:`.callbacks.SyncSignal`, `defer` must be false
and the decorated object must be a coroutine function.
.. versionadded:: 0.9
"""
def decorator(f):
add_handler_spec(
f,
_attrsignal_spec(descriptor, signal_name, f, defer)
)
return f
return decorator
def _depfilter_spec(class_, filter_name):
require_deps = ()
if class_ is not aioxmpp.stream.StanzaStream:
require_deps = (class_,)
return HandlerSpec(
(
_apply_connect_depfilter,
(
class_,
filter_name,
)
),
is_unique=True,
require_deps=require_deps,
)
[docs]def depfilter(class_, filter_name):
"""
Register the decorated method at the addressed :class:`~.callbacks.Filter`
on a class on which the service depends.
:param class_: A service class which is listed in the
:attr:`~.Meta.ORDER_AFTER` relationship.
:type class_: :class:`Service` class or
:class:`aioxmpp.stream.StanzaStream`
:param filter_name: Attribute name of the filter to register at
:type filter_name: :class:`str`
The filter at which the decorated method is registered is discovered by
accessing the attribute with the name `filter_name` on the instance of the
dependent class `class_`. If `class_` is
:class:`aioxmpp.stream.StanzaStream`, the filter is searched for on the
stream (and no dependendency needs to be declared).
.. versionadded:: 0.9
"""
spec = _depfilter_spec(class_, filter_name)
def decorator(f):
add_handler_spec(
f,
spec,
)
return f
return decorator
[docs]def is_iq_handler(type_, payload_cls, coro):
"""
Return true if `coro` has been decorated with :func:`iq_handler` for the
given `type_` and `payload_cls`.
"""
try:
handlers = get_magic_attr(coro)
except AttributeError:
return False
return HandlerSpec(
(_apply_iq_handler, (type_, payload_cls)),
) in handlers
[docs]def is_message_handler(type_, from_, cb):
"""
Deprecated alias of :func:`.dispatcher.is_message_handler`.
.. deprecated:: 0.9
"""
import aioxmpp.dispatcher
return aioxmpp.dispatcher.is_message_handler(type_, from_, cb)
[docs]def is_presence_handler(type_, from_, cb):
"""
Deprecated alias of :func:`.dispatcher.is_presence_handler`.
.. deprecated:: 0.9
"""
import aioxmpp.dispatcher
return aioxmpp.dispatcher.is_presence_handler(type_, from_, cb)
[docs]def is_inbound_message_filter(cb):
"""
Return true if `cb` has been decorated with :func:`inbound_message_filter`.
"""
try:
handlers = get_magic_attr(cb)
except AttributeError:
return False
return HandlerSpec(
(_apply_inbound_message_filter, ())
) in handlers
[docs]def is_inbound_presence_filter(cb):
"""
Return true if `cb` has been decorated with
:func:`inbound_presence_filter`.
"""
try:
handlers = get_magic_attr(cb)
except AttributeError:
return False
return HandlerSpec(
(_apply_inbound_presence_filter, ())
) in handlers
[docs]def is_outbound_message_filter(cb):
"""
Return true if `cb` has been decorated with
:func:`outbound_message_filter`.
"""
try:
handlers = get_magic_attr(cb)
except AttributeError:
return False
return HandlerSpec(
(_apply_outbound_message_filter, ())
) in handlers
[docs]def is_outbound_presence_filter(cb):
"""
Return true if `cb` has been decorated with
:func:`outbound_presence_filter`.
"""
try:
handlers = get_magic_attr(cb)
except AttributeError:
return False
return HandlerSpec(
(_apply_outbound_presence_filter, ())
) in handlers
[docs]def is_depsignal_handler(class_, signal_name, cb, *, defer=False):
"""
Return true if `cb` has been decorated with :func:`depsignal` for the given
signal, class and connection mode.
"""
try:
handlers = get_magic_attr(cb)
except AttributeError:
return False
return _depsignal_spec(class_, signal_name, cb, defer) in handlers
[docs]def is_depfilter_handler(class_, filter_name, filter_):
"""
Return true if `filter_` has been decorated with :func:`depfilter` for the
given filter and class.
"""
try:
handlers = get_magic_attr(filter_)
except AttributeError:
return False
return _depfilter_spec(class_, filter_name) in handlers
[docs]def is_attrsignal_handler(descriptor, signal_name, cb, *, defer=False):
"""
Return true if `cb` has been decorated with :func:`attrsignal` for the
given signal, descriptor and connection mode.
"""
try:
handlers = get_magic_attr(cb)
except AttributeError:
return False
return _attrsignal_spec(descriptor, signal_name, cb, defer) in handlers